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Spin response and topology of a staggered-Rashba superconductor
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Inversion symmetry is a key symmetry in unconventional superconductors, and even its local breaking can
have profound implications. For inversion-symmetric systems, there is a competition on a microscopic level
between the spin-orbit coupling associated with the local lack of inversion and hybridizing terms that “restore”
inversion. Investigating a layered system with alternating mirror-symmetry breaking, we study this competition
considering the spin response of different superconducting order parameters for the case of strong spin-orbit
coupling. We find that signatures of the local noncentrosymmetry, such as an increased spin susceptibility in
spin-singlet superconductors for T → 0, persist even into the quasi-three-dimensional regime. This leads to
a direction-dependent spin response that allows us to distinguish different superconducting order parameters.
Furthermore, we identify several regimes with possible topological superconducting phases within a symmetry-
indicator analysis. Our results may have direct relevance for the recently reported Ce-based superconductor
CeRh2As2 and beyond.
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I. INTRODUCTION

In superconductors with inversion symmetry, even- and
odd-parity gap functions are distinguished by symmetry,
and thus they correspond via the Pauli principle also to
spin-singlet and spin-triplet pairing states, respectively. As a
consequence, magnetic response can be used to distinguish
the two cases. When the system lacks inversion, however,
spin-singlet and spin-triplet states can mix [1]. In addition, the
spin-orbit coupling associated with the broken symmetry—an
example is the spin-orbit coupling of Rashba type for bro-
ken in-plane mirror symmetry—strongly restricts the possible
spin-triplet order-parameter components, in other words it
fixes the direction of the d vector [2]. Moreover, even in the
case of dominant spin-singlet or spin-triplet order parame-
ters, the magnetic response, such as the spin susceptibility or
critical fields, is not a feasible distinguishing probe anymore,
as for spin-singlet superconductors a finite spin susceptibility
for T → 0 and unusually high critical fields can be expected.
Beyond that, it was shown that topological properties of the
phases, such as vortex bound states or surface flat bands, can
serve as fingerprints of the respective phases [3,4].

Signatures of noncentrosymmetry can survive even in
inversion-symmetric systems [5,6]. In particular, a crystal
comprising weakly coupled sublattices whose subunits locally
lack inversion, such as in the hexagonal SrPtAs [7] or even
in some high-temperature cuprates [8], can exhibit an un-
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conventional magnetic response or intriguing spin textures.
In addition to specific crystal structures, this local noncen-
trosymmetricity can arise in artificial superlattices such as
the regular stacks of superconducting CeCoIn5 alternating
with layers of YbCoIn5 [9–11]. Note that the effect of local
noncentrosymmetricity depends on the relative strength of
inversion-breaking-induced spin-orbit coupling and intersub-
lattice hybridization. The focus of most studies has thus been
on quasi-two-dimensional systems with weak c-axis disper-
sion.

The recently discovered heavy-fermion superconductor
CeRh2As2 with its tetragonal crystal structure belongs also
to the class of locally noncentrosymmetric superconductors.
In particular, it consists of layers with alternating inversion-
symmetry breaking. The upper critical field directed along
the c axis (perpendicular to the staggered layers) extrapolates
to ∼14 T at zero temperature, which lies far beyond the
paramagnetic limiting field Hp ∼ 0.5 T for a critical tem-
perature Tc ≈ 0.26 K [12]. Furthermore, the upper critical
field shows a pronounced kink for a field H ≈ 4 T. This
anomaly strongly suggests a change in the order-parameter
symmetry upon increasing magnetic field as further suggested
in recent theoretical studies [13,14]. Note that the critical field
for in-plane directions, on the other hand, extrapolates to only
approximately 2 T.

Unlike most staggered systems studied so far, CeRh2As2

is expected to have a rather strong c-axis dispersion, in
other words it is a three-dimensional (3D) system. Being
a Ce-based superconductor, we expect also a sizable spin-
orbit coupling. Motivated by these observations, we revisit
the physics of locally noncentrosymmetric superconductors
in situations where both the intersublattice hopping and the
spin-orbit coupling strength are comparable to each other and
the overall bandwidth.
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FIG. 1. Schematic of the system with the triangles indicating the
mirror symmetry breaking. Note that, for simplicity, we choose the
layers to be spaced equidistantly in the z direction with unit-cell
size c.

In particular, we investigate in detail a microscopic model
of a layered system, where mirror symmetry is broken in a
staggered fashion. By design, our model allows us to investi-
gate how the system evolves from the 2D limit to the truly 3D
case. For this purpose, we first study the spin susceptibility
in the normal state, which leads us to identify four distinct
regions, going from quasi-two-dimensional (q2D) all the way
to truly 3D. Then we discuss possible order parameters and
analyze their spin response, showing how both in-plane and
out-of-plane fields are necessary to distinguish them. Eventu-
ally, we address the topological phases in the fully gapped
case. Note that since the system retains inversion, we can
use the recently developed concept of symmetry indicators
[15–19] to show that the system can realize both first- and
second-order topological superconducting phases.

II. NORMAL-STATE PROPERTIES

A. Microscopic model

We consider in the following a system of stacked layers,
where each layer lacks a mirror symmetry in such a way that
the resulting Rashba spin-orbit coupling alternates in sign; see
Fig. 1. Such a system has centers of inversion, which lie in
between two neighboring layers. However, electrons moving
within an individual layer are subject to a spin-orbit coupling
of Rashba type. For concreteness, we choose these layers to
consist of a square lattice with point group symmetry C4v ,
while the full structure involves the tetragonal point group
D4h. On a single layer, the electrons are governed by the
Hamiltonian

Hsl =
∑

ks

ξ+
k c†

kscks +
∑
kss′

�fk · �σss′c†
kscks′ , (1)

where c†
ks (cks) creates (annihilates) an electron with momen-

tum k and spin s. Setting the in-plane lattice constant a = 1,

ξ+
k = −2t (cos kx + cos ky) (2)

describes the dispersion due to nearest-neighbor hopping,

f x
k = λ sin ky, (3)

f y
k = −λ sin kx (4)

enter the expression for the Rashba spin-orbit coupling, and �σ
denote the Pauli matrices.

The three-dimensional system with a staggered stacking
of such layers, as shown in Fig. 1, is then described by the

Hamiltonian

H =
∑

k

ψ
†
ksHkψks, (5)

with the 4 × 4 matrix

Hk = ξ+
k σ0τ0 + �ξ−

k · σ0�τ + �fk · �στ3, (6)

where the interlayer hopping is given by

(ξ−
k )1 = −2tz cos(kz/2), (7)

(ξ−
k )2 = −2δtz sin(kz/2), (8)

and (ξ−
k )3 = 0. Note that we have set the z-axis lattice

constant c = 1. Furthermore, we have introduced the Pauli
matrices τi, i = 1, 2, 3, acting on the sublattice space of layers
for the operators ψ

†
ks = (c†

Aks, c†
Bks), which we denote by an A

or B sublattice index.
The eigenenergies of this Hamiltonian are doubly degener-

ate and are given by

ξk± = ξ+
k ±

√
|�ξ−

k |2 + | �fk|2 − μ, (9)

which we denote in the following as ξα with α = ± neglecting
the momentum index for shorter notation. Further, we intro-
duce the chemical potential μ. For concreteness, we use in
the following λ = 0.5t with t the energy unit, and we choose
μ so as to fix the density of electrons to ntot = 0.15 per unit
cell. This choice of filling allows us to access different Fermi
surface topologies ranging from quasi-2D to bulklike 3D; see
Appendix A.

B. Magnetic response

It is instructive to first consider the normal-state magnetic
response of this system. For this purpose, we introduce the
normal-state Green’s function, which is defined through

G0(k, ωn)−1 = iωnσ0τ0 − Hk, (10)

with ωn = (2n + 1)πT the fermionic Matsubara frequencies,
with n ∈ Z and T the temperature. This 4 × 4 Green’s-
function matrix can explicitly be calculated by inverting
Eq. (10),

G0(k, ωn) = G0
+σ0τ0 + G0

−(ξ̂−
k · σ0�τ + f̂k · �στ3), (11)

where we introduced

G0
± ≡ G0

±(k, ωn) = 1

2

( 1

iωn − ξ+
± 1

iωn − ξ−

)
, (12)

ξ̂−
k = �ξ−

k√
| �fk|2 + |�ξ−

k |2
, (13)

and

f̂k = �fk√
| �fk|2 + |�ξ−

k |2
. (14)

To investigate the system’s response to a magnetic field, we
calculate the (normal-state) uniform, static spin susceptibility

033133-2



SPIN RESPONSE AND TOPOLOGY OF A … PHYSICAL REVIEW RESEARCH 3, 033133 (2021)

(q = 0, ω = 0), which reads

χ0
i j = −μ2

BT
∑

n

∑
k

tr[σiτ0G0(k, ωn)σ jτ0G0(k, ωn)], (15)

where the trace runs over spin and layer indices. Performing
the trace first, we find that due to spin-orbit coupling, the
susceptibility has a generic form with two contributions: the
first is

χ0
P (k) = −4μ2

BT
∑
ωn

[(G0
+)2 + (G0

−)2]

= 2μ2
B

[∂nF(ξ+)

∂ξ+
+ ∂nF(ξ−)

∂ξ−

]
∝ Sk(μ) (16)

with nF(ξ ) the Fermi distribution. This term corresponds to
the Pauli-like susceptibility. In other words, it is proportional
to the spectral density at the Fermi level, Sk(μ), and after
the k-integration, the density of states of the two bands at the
Fermi level, N (μ). The second is

χ0
vV(k) = −4μ2

BT
∑
ωn

[(G0
+)2 − (G0

−)2]

= 2μ2
B

nF(ξ+) − nF(ξ−)√
| �fk|2 + |�ξ−

k |2
, (17)

and it originates from interband processes due to the spin-
orbit coupling, thus we refer to it as a van Vleck term. The
susceptibility is a combination of these Pauli and van Vleck
contributions, in particular

χ0
z =

∑
k

|ξ̂−
k |2χ0

P (k) + | f̂k|2χ0
vV(k) (18)

for fields in the z direction, i = j = z. For fields along the x
direction, we find

χ0
x =

∑
k

[|ξ̂−
k |2 + (

f̂ x
k

)2]
χ0

P (k) + (
f̂ y
k

)2
χ0

vV(k) (19)

and analogously for fields in the y direction. This result gen-
eralizes the pure Rashba case [1,20], which is recovered when
setting tz = δtz = 0. In the other limit, tz, δtz 
 λ, the weight
of the van Vleck term is strongly reduced and the Pauli sus-
ceptibility dominates. Consequently, we can use the ratio of
the van Vleck susceptibility to the total susceptibility for fields
along the z axis as a measure of the behavior related to (local)
inversion-symmetry breaking in the system.

Figure 2 shows the ratio of the van Vleck susceptibility to
the total susceptibility of the normal state as a function of the
interlayer hopping tz. The susceptibility shows a distinct be-
havior depending on the Fermi surface topology as indicated
by the insets: In the quasi-two-dimensional (q2D) regime,
where both bands are partially filled and with open Fermi
surfaces, the van Vleck contribution drops rapidly with in-
creasing tz. Then, in the first quasi-3D regime (q3DI) with one
closed Fermi surface, χ0

vV/χ0 decreases essentially linearly,
before dropping again more rapidly once the closed Fermi
surface disappears in the second quasi-3D regime (q3DII).
Finally, the remaining Fermi surface closes, at which point the
full system is 3D and behaves completely centrosymmetric.
Note that the cusps in the relative susceptibility are related
to the Lifshitz transitions connecting different regimes (see

FIG. 2. Ratio of the van Vleck contribution to the total suscep-
tibility in the normal state for fields along the z direction (solid
lines) and in-plane (dashed lines). For the case of δtz/tz = 0.2, four
different regimes are indicated, which are connected to the Fermi
surface topology. The Fermi surfaces are illustrated by the insets,
which show the Fermi surfaces in the kx-kz plane of the Brillouin
zone. For numerical reasons, we set T = 0.0025t .

Appendix A). As we will discuss in Sec. IV, different Fermi-
surface topologies are also connected to different possible
topological phases for a triplet superconductor.

Before we move to calculating the spin susceptibility in the
superconducting state, we can use the above finding to discuss
what we expect for a spin-singlet gap function. As the Pauli
term depends on the density of states at the Fermi level, which
vanishes for a full (spin-singlet) gap, the corresponding sus-
ceptibility is expected to vanish as well. The van Vleck term,

however, should stay constant, at least for
√

| �fk|2 + |�ξ−
k |2 


, with  the superconducting gap. Comparing Eqs. (18) and
(19), we further expect the susceptibility for fields in-plane
to be half the size of the susceptibility for fields along z for
T → 0, independent of the microscopic details, as long as the
system has C4 symmetry.

III. SPIN RESPONSE OF THE SUPERCONDUCTOR

A. Superconducting order parameters

Before calculating the spin response of possible super-
conducting phases, we discuss the possible pairing states of
interest here. While mixing of spin-singlet and spin-triplet
order parameters is allowed within the plane and microscop-
ically supported by the Rashba spin-orbit coupling, the order
parameter can still be classified as even or odd due to the
global inversion symmetry [5]. Similar to the noncentrosym-
metric situation [1,2,20], most spin-triplet order parameters
are suppressed by the spin-orbit coupling in the staggered
case, too [5]. The energetically most stable gap structures
correspond to intraband pairing, in other words to gap func-
tions that are diagonal in the bands with energies given by
Eq. (9) [21–23]. As these order parameters can also be treated
analytically, we will focus exclusively on them. As a con-
sequence, the order parameters we study have no in-plane
mixing of spin-singlet and spin-triplet channels, which, to first
order, will not influence their qualitative behavior. Note that
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in the following we assume the superconducting gap to be the
smallest energy scale in the problem.

For this intraband pairing, we focus on the most symmetric
gap functions leading to three different gap structures: a spin-
singlet that transforms like A1g, a spin-triplet order parameter
with its d-vector in-plane that transforms like A2u, and a
spin-triplet order parameter with the corresponding d-vector
along the z axis that transforms like A1u in D4h [5]. We briefly
discuss in the following all three order parameters.

For the spin-singlet channel, the intraband order parameter
has the form

s(k) = ψ (k)iσyτ0. (20)

This order parameter describes fully gapped s-wave spin-
singlet pairing with ψ (−k) = ψ (k) ≡ ψ .

For the spin-triplet gap, Cooper pairing can be both within
the plane and between neighboring planes: The first,

‖(k) = ( �d ‖
k · �σ )iσyτ0, (21)

where �d ‖
k = (dx

k, dy
k, 0)T ‖ �fk, is similar to the case of noncen-

trosymmetric superconductors [1,20] and transforms with A2u.
This gap vanishes for kx = ky = 0, such that for closed Fermi
surfaces as found in the q3DI and 3D regime, the gap has point
nodes. Notice that in the noncentrosymmetric case with point
group C4v , the gap functions of A1g and A2u symmetry mix,
resulting instead in line nodes for closed Fermi surfaces and
dominant triplet contribution.

In addition, the A1u order parameter with out-of-plane spin-
triplet pairing is allowed due to the staggered nature of the
mirror-symmetry breaking with a nearest-neighbor gap func-
tion

⊥(k) = [( �d⊥
k σz )iσy] · �τ . (22)

While we can in general write a gap function of this form
that is entirely intraband, we will for simplicity consider in
the following δtz = 0, such that ⊥(k) = (dz

kσz )iσyτ1 with
dz

k ∝ sin kz/2 as the lowest-order basis function [24]. This
corresponds to an interlayer pairing between nearest layers.
This gap function has a line node for kz = 0, which can be
removed by mixing in the other spin-triplet component of A1u

symmetry, namely �dk = (sin kxσx + sin kyσy)iσyτ0. This order
parameter thus in general allows for a full gap.

While knowledge of the pairing interaction is needed to
determine the leading instability in the system, we would
expect the dominant channel to be in-plane in the quasi-
two-dimensional limit. Consequently, the most probable order
parameters are the spin-singlet and the spin-triplet of A2u sym-
metry. Only when approaching the three-dimensional limit, in
other words tz ≈ t , does an interlayer pairing become com-
petitive [25]. As mentioned, this last pairing channel can lead
to a full gap even in the three-dimensional limit, which in
turn allows for topological superconductivity, as we discuss
in Sec. IV.

B. General spin response

The spin response of a superconductor can be calculated
similarly to the one in the normal state, Eq. (15), using [26]

χi j = − μ2
BT

∑
n

∑
k

tr[σiτ0G(k, ωn)σ jτ0G(k, ωn)

− σiτ0F (k, ωn)σ T
j τ0F †(k, ωn)], (23)

where G(k, ωn) and F (k, ωn) are the normal and anomalous
Green’s functions, respectively. Given the intraband order pa-
rameters of Eqs. (20), (21), or (22), these can be calculated
explicitly using the Gor’kov equations; see Appendix B. The
resulting structure of both Green’s functions is very similar
to the normal-state Green’s function of the previous section,
Eq. (11). In particular, the normal Green’s function reads

G(k, ωn) = G+σ0τ0 + G−[ξ̂−
k σ0τ1 + f̂k · �στ3] (24)

with

G± = G±(k, ωn) =−1

2

( iωn + ξ+
ω2

n + E2+
± iωn + ξ−

ω2
n + E2−

)
(25)

and Eα = √
ξ 2
α +||2. The normal Green’s function does

not depend on the specifics of the intraband gap function,
other than its (momentum-dependent) magnitude, in other
words ||2 = |ψ |2 for the spin-singlet, ||2 ≡ |‖

k|2 for the
intralayer spin-triplet, and ||2 ≡ |⊥

k |2 for the interlayer
spin-triplet case.

For the anomalous Green’s function, on the other hand, the
gap structure enters explicitly,

F (k, ωn) = {F+τ0 + F−[ξ̂−
k σ0τ1 + f̂k · �στ3]}(k) (26)

with

F± = F±(k, ωn) = 1

2

( 1

ω2
n + E2+

± 1

ω2
n + E2−

)
. (27)

To proceed, we separate the susceptibility in Eq. (23) into a
“normal” and an “anomalous” part, χi j = χn

i j + χ a
i j . The trace

of the normal part is the same for all three order parameters
and, as in the discussion in the previous section, yields

χn
z (k, ωn)

4μ2
BT

= −{(G+)2 + (G−)2[(ξ̂−
k )2 − | f̂k|2]} (28)

and similarly

χn
x (k, ωn)

4μ2
BT

= −{
(G+)2 + (G−)2

[
(ξ̂−

k )2 + ( f̂ x
k )2 − (

f̂ y
k

)2]}
.

(29)
As the gap structure enters the anomalous Green’s function,
we discuss in the following first the susceptibility for the case
of the spin-singlet and then the case of the spin-triplet order
parameters.

1. Spin-singlet order parameter

Using the s-wave singlet gap function in the anomalous
Green’s functions, Eq. (26), we find for the anomalous part
of the susceptibility

χ a
z (k, ωn)

4μ2
BT

= −||2{(F+)2 + (F−)2[(ξ̂−
k )2 − | f̂k|2]} (30)
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and similarly

χ a
x (k, ωn)

4μ2
BT

=−||2{(F+)2 + (F−)2
[
(ξ̂−

k )2 + (
f̂ x
k

)2 − (
f̂ y
k

)2]}
.

(31)

We can again separate the susceptibility into two contribu-
tions, namely

χ+
P (k, ωn) = (G+)2 + (G−)2 + ||2[(F+)2 + (F−)2]

= 1

2

∑
α=±

(iωn + ξα )2 + ||2
(ω2

n + E2
α )2

(32)

and

χ+
vV(k, ωn) = (G+)2 − (G−)2 + ||2[(F+)2 − (F−)2]

= 1

2

{ (iωn − ξ+)(iωn − ξ−) + ||2
(ω2

n + E2+)(ω2
n + E2−)

}
. (33)

The total susceptibility after Matsubara summation is given
by

χ s
z =

∑
k

(ξ̂−
k )2χ+

P (k) + | f̂k|2χ+
vV(k) (34)

for fields along z, and for fields along the x or y direction, the
susceptibility has the form

χ s
x =

∑
k

[(
ξ̂−

k

)2 + (
f̂ x
k

)2]
χ+

P (k) + (
f̂ y
k

)2
χ+

vV(k). (35)

The Matsubara sums are evaluated in Appendix C and yield

χ+
P (k) = 2μ2

B

∑
α

1

4T cosh2(Eα/2T )
(36)

for the Pauli term, and for  
√

|�ξ−
k |2 + | �fk|2 we can ap-

proximate

χ+
vV(k) ≈ 2μ2

B

[nF(E+) − nF(E−)]√
| �fk|2 + |�ξ−

k |2
≈ χ0

vV(k) (37)

for the van Vleck susceptibility.

2. Intralayer spin-triplet pairing

For spin-triplet pairing, we start with the intralayer-pairing
case with order parameter ‖(k) = ( �d ‖

k · �σ )iσyτ0, where �d ‖
k ‖

�fk. For out-of-plane fields, i = j = z, the anomalous part of
the susceptibility yields

χ a
z

4μ2
BT

= |k|2{F 2
+ + F 2

−[(ξ̂−
k )2 − | f̂k|2]}. (38)

For in-plane fields, i = j = x, we find

χ a
x

4μ2
BT

= (|dy
k|2 − |dx

k|2){F 2
+ + F 2

−[(ξ̂−
k )2 + (

f̂ x
k

)2 − (
f̂ y
k

)2]}
.

(39)

Combining Eqs. (28) and (29) with (38) and (39), we thus
find for the total susceptibility two additional contributions
compared to the spin-singlet case. First,

χ−
P (k, ωn) = (G+)2 + (G−)2 − ||2[(F+)2 + (F−)2]

= 1

2

∑
α=±

(iωn + ξα )2 − ||2
(ω2

n + E2
α )2

, (40)

which, after performing the Matsubara sum (Appendix C),
yields

χ−
P (k) = 2μ2

B

∑
α

||2
E3

α

tanh
( Eα

2T

)
+ ξ 2

α

E2
α

1

4T cosh2(Eα/2T )
.

(41)
The second,

χ−
vV(k, ωn) = (G+)2 − (G−)2 − ||2[(F+)2 − (F−)2]

= 1

2

{ (iωn − ξ+)(iωn − ξ−) − ||2(
ω2

n + E2+
)(

ω2
n + E2−

) }
, (42)

yields for
√

|�ξ−
k |2 + | �fk|2 
  the same van Vleck contribu-

tion as Eq. (37), χ−
vV(k) ≈ χ+

vV(k) ≡ χvV(k). For fields out of
plane, we thus find the susceptibility

χ t,‖
z =

∑
k

(ξ̂−
k )2χ−

P (k) + | f̂k|2χvV(k) (43)

and for the susceptibility for in-plane fields

χ t,‖
x =

∑
k

{[(
ξ̂−

k

)2 + (
f̂ x
k

)2] |dx
k|2

|k|2 χ+
P (k) + |dy

k|2
|k|2 χ−

P (k)
]

+ (
f̂ y
k

)2
χvV(k)

}
. (44)

3. Interlayer pairing

For the interlayer pairing with ⊥(k) = (dz
kσz )iσyτ1, the

traces of the anomalous part of the susceptibility in Eq. (23)
yield for out-of-plane fields

χ a
z

4μ2
BT

= −∣∣dz
k

∣∣2{
F 2

+ + F 2
−[(ξ̂−

k )2 − | f̂k|2]
}
, (45)

and for in-plane fields, i = j = x, we find

χ a
x

4μ2
BT

= ∣∣dz
k

∣∣2{
F 2

+ + F 2
−
[
(ξ̂−

k )2 + ( f̂ x
k )2 − (

f̂ y
k

)2]}
. (46)

For fields out-of-plane, we thus find the susceptibility

χ t,⊥
z =

∑
k

(ξ̂−
k )2χ+

P (k) + | f̂k|2χvV(k) (47)
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FIG. 3. Out-of-plane (solid lines) and in-plane (dashed lines)
susceptibility for all three order parameters for T → 0 compared
to the normal-state susceptibility as a function of z axis hopping
for δtz = 0. The pairing gaps are defined as (k) = ψ for the
spin-singlet, �d‖

k = (− sin ky, sin kx, 0) for intralayer pairing, and
dz

k =  sin kz/2 for interlayer pairing. For the numerical evaluation,
we used  = 0.025t and T = 0.0025t .

and for in-plane fields the susceptibility

χ t,⊥
x =

∑
k

{[
(ξ̂−

k )2 + (
f̂ x
k

)2]
χ−

P (k) + (
f̂ y
k

)2
χvV(k)

}
. (48)

C. Discussion

Because the Pauli susceptibility in Eq. (36) vanishes
for T → 0 for the spin-singlet state, only the temperature-
independent van Vleck contribution of the normal state
remains. Moreover, comparing Eqs. (34) and (35), we find for
the spin-singlet pairing χ s

z = 2χ s
x . To discuss the behavior of

the susceptibility for the triplet states in the T → 0 limit, we
rewrite the term in Eq. (41) as

χ−
P (k) = 2μ2

B

∑
α

∂

∂ξ

[ ξα

Eα

tanh
( Eα

2T

)]
≈ χ0

P (k), (49)

which, for T    t , reduces to a derivative of a step
function around μ and thus approximately to the normal-state
Pauli contribution to the susceptibility. Hence, we find that the
spin susceptibility for out-of-plane fields does not decrease for
intralayer pairing, while it follows the trend of the spin-singlet
case for interlayer pairing. For in-plane fields, however, the in-
tralayer pairing state reduces the spin susceptibility, while the
interlayer pairing state is not paramagnetically limited. These
findings are thus in accordance with the general expectation
that for a d-vector perpendicular to the magnetic field, the sus-
ceptibility stays constant, while the contribution parallel to the
field reduces the susceptibility. Note that here, the van Vleck
term is generally not affected by superconductivity, since it
arises from interband contributions, and the band splitting is
governed by

√
|�ξ−

k |2 + | �fk|2 
 .
Figure 3 shows the susceptibilities for all three order pa-

rameters as a function of the z-axis hopping tz, where, as
mentioned, we use δtz = 0 for simplicity. As discussed above,
the zero-temperature in-plane susceptibility is always reduced
to half of the out-of-plane susceptibility for (fully gapped)

spin-singlet pairing, while this is not the case for spin-triplet
order parameters. Note that the interlayer state has a larger
susceptibility in these calculations due to the line nodes at
kz = 0. These nodes can in principle be gapped out, such
that the out-of-plane susceptibility of the spin-singlet and
the interlayer spin-triplet would be equal. Finally, note that
the in-plane (out-of-plane) pairing state is limited by orbital
depairing for out-of-plane (in-plane) fields.

IV. TOPOLOGICAL CONSIDERATIONS

In this section, we investigate the possible nontrivial topol-
ogy of the superconducting phases in the different regimes
identified in Sec. II. In systems invariant under inversion with
an odd-parity superconducting order parameter, the topol-
ogy of the superconducting phase can be identified using
so-called symmetry indicators (SI) [15–17]. These indicators
are defined in terms of the inversion eigenvalues of the occu-
pied normal-state bands at time-reversal-symmetric momenta
(TRIMs), where −k ≡ k up to reciprocal-lattice translations.
In particular, the 3D inversion-symmetry indicator κ3D is a
Z8-valued quantity, such that an odd SI indicates a strong
topological superconductor, while κ3D = ±2 and κ3D = 4
indicate second- and third-order topological phases, respec-
tively.

The inversion-symmetry indicator for a time-reversal sym-
metric odd-parity superconductor is defined as

κ3D = 1

2

∑
k∈TRIMs

(n+
k,N − n−

k,N), (50)

where n±
k,N is the number of occupied bands at the TRIMs

with inversion eigenvalue ±1. To calculate the indicator, it is
convenient to rewrite the dispersion in the z direction, Eqs. (7)
and (8), as

(ξ̃−
k )1 = −tz + δtz − (tz + δtz ) cos kz, (51)

(ξ̃−
k )2 = −(tz + δtz ) sin kz. (52)

This corresponds to a gauge transformation such that the
Fourier transform does not resolve the unit-cell structure any-
more. The advantage, however, is that now IHkI−1 = H−k
with I = σ0τ1 and we can straightforwardly read off the
inversion eigenvalues of the normal-state bands.

We are interested in inversion eigenvalues at two TRIMs
� = (0, 0, 0) and Z = (0, 0, π ). At these two momenta, the
two bands with energies given by Eq. (9), namely ξ�,± =
−4t ∓ 2tz and ξZ,± = −4t ∓ 2δtz, have inversion eigenvalues
±1. Depending on the Fermi-surface topology and hence the
number of bands occupied at the TRIMs, the system can
realize a first- or a second-order topological superconductor;
see Fig. 4. A third-order topological superconductor, however,
is not possible at least with this simplified band structure,
since for both bands occupied, the inversion eigenvalues are
opposite and cancel in Eq. (50).

Table I summarizes the symmetry indicators for the two
spin-triplet (odd-parity) order parameters considered here. In
particular, the A2u state, which pairs electrons within the layers
and is thus more probable in the q2D limit, allows for a
second-order phase when only one open Fermi surface exists.
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FIG. 4. Projection of the Fermi surface onto the kx-kz plane for
different values of interlayer hopping parameters tz and δtz. Two
colors correspond to two different momentum sectors with inversion
eigenvalues +1 and −1, respectively.

In the other potentially nontrivial cases, this gap structure
has point nodes for kx = ky = 0. The A1u state, which can be
fully gapped for any Fermi-surface topology, thus allows in
principle for both first- and second-order phases. As the A1u

state corresponds to an anisotropic Balian-Werthammer state
known from the B phase of 3He, a nontrivial topology might
not be surprising [27]. Note, however, that this gap structure
is rather unlikely in the quasi-2D limit.

V. CONCLUSION

In some globally centrosymmetric systems, the lack of in-
version symmetry in subunits can influence the physical prop-
erties significantly. Such remnants of noncentrosymmetricity
are particular interesting in the context of superconductivity,
where inversion symmetry yields a strict distinction between
spin-singlet and spin-triplet Cooper pairing. In locally non-
centrosymmetric systems, however, the two may mix in a very
characteristic way.

TABLE I. Symmetry indicator for the two spin-triplet order pa-
rameters with A1u and A2u symmetry, where 1 corresponds to a
first-order and 2 to a second-order topological superconductor. The
× indicates that the gap has point nodes and no strong topology is
possible, while parentheses indicates that the interlayer order param-
eter is not likely unless the system is three-dimensional.

 q2D q3DI q3DII 3D

A1u (0) (1) 2 1
A2u 0 × 2 ×

In our work, we have investigated signatures of local non-
centrosymmetricity for the case of a layered system with
staggered layer-intrinsic Rashba spin-orbit coupling. Hereby,
we have focused on different regimes going from a quasi-
2D to fully 3D band structure upon tuning the interlayer
hybridization. First looking at the normal-state spin suscep-
tibility, we identified four different regimes, characterized by
their Fermi surface topology.

Unlike the case of globally noncentrosymmetric supercon-
ductors, where only one kind of spin-triplet state is feasible,
we identified two such spin-triplet states in the staggered case.
We analyzed the resulting three order parameters, namely a
generic spin-singlet and those two spin-triplet phases, and
we show that the comparison between their behavior under
in-plane and out-of-plane magnetic fields allows for the order
parameters’ distinction. In particular, their low-temperature
spin susceptibility displays different behavior that influence
the paramagnetic limiting effects for different field orienta-
tions.

For the spin-triplet order parameters, we have finally
explored possible topological phases within the symmetry
indicator framework, and we identified both first- and second-
order topological phases. Third-order topology is, on the other
hand, not possible in the minimal model considered here.

Finally, we comment on the relevance of our results con-
cerning CeRh2As2 [12]. While our study cannot quantitatively
account for either the complicated band structure or inter-
action effects in this heavy-fermion compound, qualitative
conclusions can be drawn [28]: For c-axis fields, the low-field
state seems to be paramagnetically limited, which could have
either spin-singlet or interlayer spin-triplet character. How-
ever, as the in-plane fields show a smaller critical field for
CeRh2As2, it is rather likely that the low-field phase con-
stitutes spin-singlet pairing. Note that the spin-triplet phase
that would emerge in this scenario at high fields is certainly
topologically trivial, as there are no first-order TSC in 3D. A
generic possibility would, however, be a Weyl superconductor.
As the field-induced phase transition indicates that the spin-
triplet state is close by in parameter space, it might be possible
to stabilize it also with other means, thus inducing possibly
topological superconductivity.

ACKNOWLEDGMENTS

We thank Daniel F. Agterberg, Elena Hassinger,
Seunghyun Khim, Titus Neupert, Eric Schertenleib, and
Luka Trifunovic for fruitful discussions. A.S. was supported
by funding from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation
program (ERC-StG-Neupert-757867-PARATOP) and by a
Forschungskredit of the University of Zurich, Grant No.
FK-20-101. M.S. is financially supported by a Grant of the
Swiss National Science Foundation (No. 184739).

APPENDIX A: NORMAL-STATE SUSCEPTIBILITY

As shown in the main text, there are two contributions to
the normal-state susceptibility χ0(k): The Pauli χ0

P (k) and the
van Vleck χ0

vV(k) contribution. The two contributions behave
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FIG. 5. The normal state susceptibility, and the Pauli and the
van Vleck contributions to it for fields along the z direction (solid
lines) and in-plane (dashed lines). Four different regimes of the
Fermi surface topology are indicated for the case of δtz/tz = 0.2. For
numerical reasons, we set T = 0.0025t .

differently as the system goes from quasi-2D to fully bulk-3D
behavior.

At low interlayer coupling tz, normal-state susceptibility
is fully dominated by the van Vleck term for in-plane fields,
while in the case of out-of-plane fields it is composed by equal
contributions from both the Pauli and the van Vleck terms. As
the interlayer coupling tz increases, the van Vleck contribution
vanishes while the Pauli term increases. The exact behavior of
the Pauli term, in particular its cusps, is strongly affected by
the Lifshitz transitions resulting in the change of the Fermi
surface topology (see Fig. 5).

In the main text, we used an electron density fixed at
ntot = 0.15 per unit cell. While the qualitative picture does not
change when increasing the electron density, larger inter-plane
hopping tz is required to go through the Lifshitz transitions
and access a more three-dimensional character of the system.
This is illustrated in Fig. 6, where the first peak in the Pauli
susceptibility shifts to higher tz/λ for increased density. Note
that the peak at tz/λ ≈ 1.75 for ntot = 0.15 is connected to
entering the truly 3D regime (see also Fig. 2) and can only be
accessed in the parameter regime studied for this low electron
density.

APPENDIX B: GOR’KOV EQUATIONS

To calculate the Green’s functions, we can use the Gor’kov
equations

G−1
0 (k, ωn)G(k, ωn) + kF †(k, ωn) = τ0σ0, (B1)

(
G−1

0

)T
(−k,−ωn)F †(k, ωn) − 

†
kG(k, ωn) = 0, (B2)

G−1
0 (k, ωn)F (k, ωn) − kGT (−k,−ωn) = 0. (B3)

Equation (B2) leads to

F †(k, ωn) = GT
0 (−k,−ωn)†

kG(k, ωn). (B4)

We can use this in the first Gor’kov equation to find

G−1(k, ωn) = G−1
0 (k, ωn) + kGT

0 (−k,−ωn)†
k. (B5)

FIG. 6. The Pauli (solid lines) and the van Vleck (dashed lines)
contributions to the normal state susceptibility for fields along the
z direction for δtz/tz = 0.2. Colored regions indicate regimes with
different Fermi surface topology for three values of the electron
density ntot.

For the following, we thus need the normal-state Green’s
function given by Eq. (11) and similarly

GT
0 (−k,−ωn) = G̃0

+σ0τ0 + G̃0
−
[
ξ̂−

k σ0τ3 + (
f̂ y
k σy − f̂ x

k σx
)
τ1

]
(B6)

[G̃0
± = G0

±(−k,−ωn) and �f−k = − �fk]. We are interested in
the intraband gap functions given in Eqs. (20) or (21) and (22),
for which we find

kGT
0 (−k,−ωn)†

k

= |k|2[G̃0
+σ0τ0 + G̃0

−[ξ̂−
k σ0τ3 + �̂fk · �στ1]] (B7)

with k
†
k = |k|2σ0τ0. Then

G−1(k, ωn) = (iωn − ξ+
k + 2G̃0

+)τ0σ0 + (|k|2G̃0
−

−
√

| �fk|2 + (ξ−
k )2)[ξ̂−

k σ0τ3 + �̂fk · �στ1]. (B8)

To invert this expression, we note that for each k, we can
rotate the spins to be parallel to z such that the inverse Green’s
function (B8) has the structure

G−1(k, ωn) = Aτ0 + BB̂s · τ (B9)

with B̂s a unit vector in the space of τ matrices for spin s. The
inversion is then given by

G(k, ωn) = G+τ0 + G−B̂s · τ (B10)

with

G± = 1

2

(
1

A + B
± 1

A − B

)
. (B11)

Finally, we find

A ± B = iωn − ξ+
k + |k|2(G̃0

+ ± G̃0
−) ∓

√
| �fk|2 + (ξ−

k )2

= −ω2
n + ξ 2

± + |k|2
iωn + ξ±

, (B12)
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such that, after rotating the spin back, the normal Green’s
function in the superconducting phase is given by Eq. (24).

Using Eq. (B3), we can further calculate the anomalous
Green’s function to arrive at Eqs. (26) and (27).

APPENDIX C: MATSUBARA SUMS OF SUPERCONDUCTING GREEN’S FUNCTIONS

The susceptibilities we calculated in the main text comprise four different terms of the general form denoted by χ±
P and χ±

vV.
In this Appendix, we will explicitly perform the Matsubara sums to better understand these contributions.

1. Pauli-like terms

To evaluate the Matsubara sum of the first two contributions, Eqs. (36) and (41), we need to calculate the residues of

(z + ξλ)2 ± |k|2
(−z2 + ξ 2

λ + |k|2)2
nF(z), (C1)

at the singularities not stemming from the Fermi distribution function. We find two second-order poles, namely z = ±E =
±

√
ξ 2 + ||2 (for simplicity, we omit the index α here). The residue is then

Res±E = lim
z→±E

∂

∂z

[ (z + ξ )2 + ||2
(z ± E )2

nF(z)
]

= lim
z→±E

[ 2z + 2ξ

(z ± E )2
nF(z) − 2

(z + ξ )2 + ||2
(z ± E )3

nF(z) + (z + ξ )2 + ||2
(z ± E )2

n′
F(z)

]

=
[±2E + 2ξ

4E2
nF(±E ) − (±E + ξ )2 + ||2

±4E3
nF(±E ) + (±E + ξ )2 + ||2

4E2
n′

F(±E )
]

=
[

± 2E2 ± 2Eξ − E2 ∓ 2Eξ − ξ 2 − ||2
4E3

nF(±E ) + (±E + ξ )2 + ||2
4E2

n′
F(±E )

]

=
[

± E2 − ξ 2 − ||2
4E3

nF(±E ) + (±E + ξ )2 + ||2
4E2

n′
F(±E )

]
. (C2)

Using that

n′
F(z) = ∂nF(z)

∂z
= 1

4T cosh2(z/2T )
(C3)

is an even function of z, we find for the sum of the two residues

ResE + Res−E = 1

4T cosh2(E/2T )
. (C4)

Similarly, replacing ||2 with −||2 in Eq. (C2) for χ−
P , we find

ResE + Res−E = ||2
E3

tanh
( E

2T

)
+ ξ 2

E2

1

4T cosh2(E/2T )
. (C5)

Finally, we write for the two Pauli contributions

χ+
P (k) = 2μ2

B

∑
λ

1

4T cosh2(Eλ/2T )
, (C6)

χ−
P (k) = 2μ2

B

∑
λ

||2
E3

λ

tanh
( Eλ

2T

)
+ ξ 2

λ

E2
λ

1

4T cosh2(Eλ/2T )
. (C7)

The terms with the cosh vanish for T → 0, such that only the first term of the latter equation survives.

2. van Vleck–like terms

The second set of contributions, Eqs. (37) and (42), has four poles at ±E± and they are all first order. At T = 0, the poles
with positive energy thus lead to a vanishing Fermi function while the Fermi functions for the negative energies yield 1. We thus
find

χ±
vV(k) = 2μ2

B

∑
α=±

α
(Eα + ξ+)(Eα + ξ−) ± ||2
2Eα (E+ − E−)(E+ + E−)

. (C8)
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The energy scale for the van Vleck susceptibility is given by
√

| �fk|2 + |�ξ−
k |2, and since we assume

√
| �fk|2 + |�ξ−

k |2 
 , we
proceed by setting the gap to zero. Then, we find

χ±
vV(k) ≈ χvV(k) = 2μ2

B

⎡
⎣ (|ξ+| + ξ+)(|ξ+| + ξ−)

2|ξ+|ξ+
k

√
| �fk|2 + |�ξ−

k |2
− (|ξ−| + ξ+)(|ξ−| + ξ−)

2|ξ−|ξ+
k

√
| �fk|2 + |�ξ−

k |2

⎤
⎦. (C9)

This expression yields exactly zero if both ξ+ and ξ− are either positive or negative. However, when only one of them is negative
while the other is positive, i.e., nF (ξ+) − nF (ξ−) �= 0, we find

χvV(k) ≈ 2μ2
B

[nF (ξ+) − nF (ξ−)]√
| �fk|2 + |�ξ−

k |2
, (C10)

which is the van Vleck susceptibility.
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